PSL30

Transmission Line Simulator

User Guide

© TecQuipment Ltd 2017

Do not reproduce or transmit this document in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system without the express permission of TecQuipment Limited.

TecQuipment has taken care to make the contents of this manual accurate and up to date. However, if you find any errors, please let us know so we can rectify the problem.

TecQuipment supplies a Packing Contents List (PCL) with the equipment. Carefully check the contents of the package(s) against the list. If any items are missing or damaged, contact TecQuipment or the local agent.

Symbols used in this manual

Important information.

CAUTION Failure to follow these instructions can damage the unit, other equipment, personal property or the environment.

Failure to follow this instruction may cause injury.

Contents

The Transmission Line Simulator Parameter Values: Line Inductors Unbalanced Loads and Faults4 The Protection Relay, Voltage and Current Transformers......8 The Power System Laboratory (PSL)9 **Protection Relays and Systems**

TecQuipment Ltd User Guide

Menu Structure	
Navigation of the Menu and Settings	
Browsing the Settings Menu	
Relay Configuration	
Essential Operating Procedures	24
Reading Fault Records from a Relay Front Panel	24
The P127 Directional Overcurrent Relay	25
Use of the P127 in the Transmission Line Simulator: Overcurrent Protection Entering Settings in the relay	.27
Theory	
Line Parameters	31
Conductor Resistance (R)	31 31
Line Theory	34
Short Line Representation	36
Medium Line Representation	37
The Nominal T Method	37 38
Kapp's Regulation Diagram and Theory	39
Power and Reactive Power Flow in Power Systems	40
Power Transmission and Voltage Regulation for Lines where Capacitance is	
glected	
Power Flow and Voltage Regulation for Lines where Capacitance is Include Voltage Regulation at Constant Load Power Factor	d 43
Symmetrical Faults on a Power System	45
D.C. Components of Fault Current	46
Unbalanced Faults	
The Method of Symmetrical Components	
Experiments	
Introduction	51
Loads in Series and Parallel	51

User Guide TecQuipment Ltd

Expe	eriment 1: Single Phase Line - Short Line Investigation	53
	Aims	53 53
-	eriment 2: Single Phase Line - Medium or Long Line Investigation (Nominal T Me	
	Aims	56 56
	eriment 3: Single Phase Line - Medium or Long Line Investigation (Nominal Pinod)	
	Aims	59 59
•	eriment 4: Single Phase Line - Effect of Real Power and Reactive Power Flow of age Drop and Transmission Angle	62
	Aim	62 63
-	eriment 5: Single Phase Line - Medium/Long Line. Investigation le Natural Load of a Line	66
	Aim	66 67 67
Ехр е 69	eriment 6: Single Phase Line - Voltage Regulation at Constant Load Power Fact	or.
	Aim	69 70 71 74
Ехре	eriment 7: Three Phase Line - Per Unit Values	
	Per Unit Calculations	77

TecQuipment Ltd User Guide

Experiment 8: Three Phase line - Unbalanced Loads and the Neutral Connection.	. 79
Aims	.79
Experiment 9: Three Phase Line - Fault Simulation	.85
Aims Procedure 1 - Line to line Fault Procedure 2 - Line to Ground Fault Procedure 3: Line-Line-Ground Faults	.85 .85
Experiment 10: Three Phase Line - Line Protection Studies	.88
Aim Notes Procedure 1 - Overcurrent Protection Procedure 2 - Protection Relay Discrimination Part A - No Discrimination Part B - Grading Using the Time Multiplier Setting (tms) Procedure 3 - Directional Overcurrent Protection	.88 .88 .90 .90 .90
Part A - Non Directional Setting	.95 .95
Further Experiments	100
Three Phase Line - Parallel Feeders	100 100
APPENDIX 1 Typical Results	
Experiment 1: Single Phase Line - Short Line Investigation	103
Experiment 2: Single Phase Line - Medium or Long Line Investigation (Nominal T Me	∍th- 104
Experiment 3: Single Phase Line - Medium or Long Line Investigation (Nominal Pi Method)	
Experiment 4. Single Phase Line - Effect of Real Power and Reactive Power Flow Voltage Drop and Transmission Angle	
Experiment 5: Single Phase Line - Medium/Long Line. Investigation of the Natural Load of a Line. Procedure 1 Procedure 2 Procedure 3	109 110
Experiment 6: Single Phase Line - Voltage Regulation at Constant Load Power Fac 112	tor.
Experiment 7: Three Phase Line - Per Unit Values	116

User Guide TecQuipment Ltd

Experiment 8: Three Phase line - Unbalanced Loads and the Neutral Connecti	on. 117
Procedure 1	
Experiment 9: Three Phase Line - Fault Simulation	118
Procedure 1	
Experiment 10: Three Phase Line - Line Protection Studies	120
APPENDIX 2 Line Data	
Calculation of Z_1 and Z_0 for Three Phase Lines with Earth Return \dots	126
APPENDIX 3 Typical Results of AC & DC Tests on Line Conductors	
APPENDIX 4 Summary of Per Unit and Symmetrical Component Fault Information	
Summary of Per Unit Systems	131
Line to Ground Fault	132
Line-Line Faults	135
Conditions at fault:	135
To find I ₁ and I ₂	135
Line-Line to Ground Fault	
Conditions:	137

APPENDIX 5 References

TecQuipment Ltd User Guide

User Guide TecQuipment Ltd

The Transmission Line Simulator

Introduction and Overview

Figure 1 The TecQuipment Transmission Line Simulator (PSL30)

Overhead transmission lines are the most commonly used method of transferring power from one location to another, usually without interruption. A.C. lines have always been most popular because its easy to transform high voltages into lower ones. However, improvements in technology have resulted in competitive d.c. transmission schemes over certain minimum distances, where a.c lines can be expensive.

The Transmission Line Simulator is a fully equipped module that examines the performance and characteristics of single and three-phase lines. It examines the nature of transmission lines, and the transmission line as a power system component.

The Transmission Line Simulator includes two types of transmission lines to allow students to do two types of experiments. It has a single phase line that connects to show a nominal T and Π representation. It also has a three-phase line with series and shunt reactances given in 'per unit' form. The single-phase line allows students to examine the accuracy of T and Π representations. The three-phase line allows students to do basic power system experiments, such as load and fault studies.

The Transmission Line Simulator is also one of the five Modules that form the Power System Laboratory. This system allows the Transmission Line Simulator to connect to other components such as a generator and transformers. This extends the experiments that students can do. At the end of this section is a brief description of the Power System Laboratory.

Experiment 1: Single Phase Line - Short Line Investigation

Aims

To find the regulation and transmission of a simple inductive line without shunt capacitance, and to construct the relevant phasor diagram.

Notes

You use a short section of the line with only two inductive elements. The line has a 'send' end (to the left) that connects to the supply, and a 'receive' end (to the right) that connects to the loads.

Procedure 1 - Resistive load

- 1) Create a blank table of results, similar to Table 5.
- 2) Connect the circuit as shown in Figure 34, but only select a 100% resistive load (L1).
- 3) Shut CB1 (at the secondary of the supply transformer) and CB2 (at the 'send' end of the single phase line). This connects power to the line with a current of roughly 5 Ampere.
- 4) Use the analogue voltmeter to measure the voltage drop (Vd) across the line impedance. Use the multifunction meters to measure the sending and receiving end voltages, currents and power. You can also use these meters to show power factor, but for good practice, use Equation 5 to calculate the power factor for each end of the line. The sending end voltage should remain fairly constant determined by your local mains supply and cables.

Why is the voltage drop (Vd) not equal to the difference between the sending and receiving voltage?

Power Factor
$$(\phi) = \frac{W}{VI}$$
 (5)

- 5) Use your results to find the line regulation and transmission efficiency.
- 6) Construct a short line phasor diagram as shown in the theory section and use it to find the effective values of line resistance and reactance (I_RR and I_RX) for your recorded load current (receive end).
- 7) Use your results to calculate the actual value of inductance and compare it with the values written next to the inductors of the single phase line.

Voltages, Currents and Powers	100% Resistive Load	100% Resistive Load + 50% Inductive Load
Sending Voltage (V _s)		
Sending Current (I _s)		
Sending Power (W _s)		
Receiving Voltage (V _R)		
Receiving Current (I _R)		
Receiving Power (W _R)		
Line Volt Drop (V _d)		

Table 5 Blank Results Table for Experiment 1

Procedure 2 - Resistive and Inductive Load

Repeat Procedure 1, but use a 50% inductive load in parallel with the resistive load (shown by the dotted lines of the connection diagram).

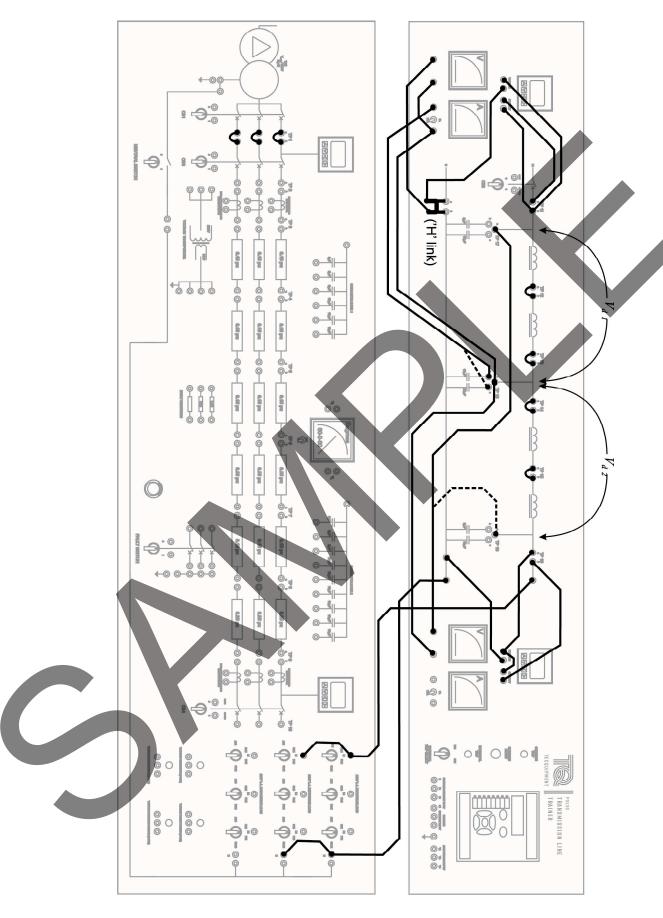


Figure 35 Connection Diagram For Experiment 2

Experiment 2: Single Phase Line - Medium or Long Line Investigation (Nominal T Method)

Aims

To find the regulation and transmission efficiency of a longer line with shunt capacitance (represented by the nominal T circuit), and to construct the relevant phasor diagram.

Notes

You use the full length of the single phase line, with all four inductors and a shunt capacitor connected half-way along the line in the T type connection.

Procedure 1 - Shunt 10 μ F (50 Hz) or 8 μ F (60 Hz)

- 1) Create a blank table of results, similar to Table 6.
- 2) Connect the circuit as shown in Figure 35 using all four inductors. Select a 100% resistive and 50% inductive load.
- 3) Shut CB1 (at the secondary of the supply transformer) and CB2 (at the 'send' end of the single phase line). This connects power to the line.
- 4) Use the right-hand analogue voltmeter to measure the voltage drop (V_{d1}) across the two inductances at the sending end, and the volt drop across the two inductances at receiving end (V_{d2}). In Figure 35, the right-hand dotted line shows which wire to move to make this connection. Use the multifunction meters to measure the sending and receiving end voltages, currents and power. You can also use these meters to show power factor, but for good practice, use equation 6 to calculate the power factor for each end of the line. The sending end voltage should remain fairly constant determined by your local mains supply and cables.

Power Factor
$$(\phi) = \frac{W}{VI}$$
 (6)

Voltages, Currents and Powers	Shunt 10μF 50 Hz 8 μF 60 Hz	Shunt 20μF 50 Hz 16 μF 60 Hz
Sending Voltage (V _s)		
Sending Current (I _s)		
Sending Power (W _s)		
Receiving Voltage (V _R)		
Receiving Current (I _R)		
Receiving Power (W _R)		
Line Volt Drop (V _{d1})		
Line Volt Drop (V _{d2})		
Capacitor Voltage (V _C)		
Capacitor Current (I _C)		

Table 6 Blank Results Table for Experiment 2

- 5) As described in Section 3, find the line regulation and efficiency.
- 6) Construct the phasor diagram as described in Section 3 for the medium line (with nominal T). and determine the line regulation and transmission efficiency.

Procedure 2 - Shunt 20 μ F (50 Hz) or 16 μ F (60 Hz)

7) Repeat procedure 1, but connect the 20 μ F (or 16 μ F for 60 Hz) line capacitor in place of the 10 μ F (or 8 μ F for 60 Hz). In Figure 35, the left-hand dotted line shows which wire to move to make this connection.

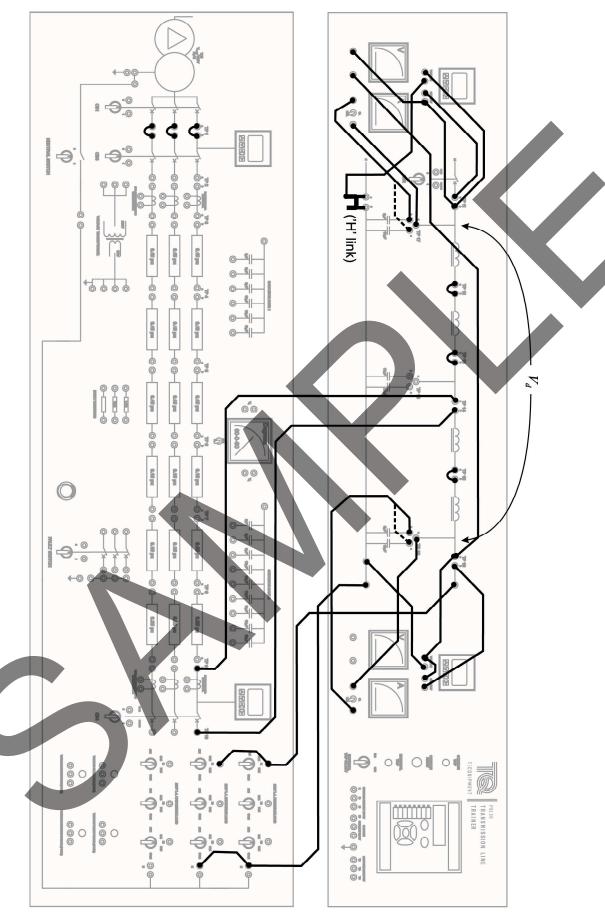


Figure 36 Connection Diagram For Experiment 3

APPENDIX 1 Typical Results

These results are typical and for reference only. Your results may be slightly different, due to tolerances in the parts of the Transmission Line Simulator.

Experiment 1: Single Phase Line - Short Line Investigation

Voltages, Currents and Powers	100% Resistive Load	100% Resistive Load + 50% Inductive Load
Sending Voltage (V _s)	125	125
Sending Current (I _s)	4.9	5
Sending Power (W _s)	589	481
Receiving Voltage (V _R)	114	102
Receiving Current (I _R)	4.9	5
Receiving Power (W _R)	565	462
Line Volt Drop (V _d)	36	36

Table 22 Results For Experiment 1 (50 Hz)

Voltages, Currents and Powers	100% Resistive Load	100% Resistive Load + 50% Inductive Load
Sending Voltage (V _s)	124.5	124.6
Sending Current (I _s)	4.95	5.06
Sending Power (W _s)	592	486
Receiving Voltage (VR)	115.5	102.6
Receiving Current (I_R)	4.96	5.06
Receiving Power (W _R)	573	466
Line Volt Drop (V _d)	33.83	34.46

Table 23 Results For Experiment 1 (60 Hz)

Experiment 2: Single Phase Line - Medium or Long Line Investigation (Nominal T Method)

Voltages, Currents and Powers	10μF Shunt	20μF Shunt
Sending Voltage (V _s)	127	125
Sending Current (I _s)	4.1	3.9
Sending Power (W _s)	362	364
Receiving Voltage (V _R)	86	86.7
Receiving Current (I _R)	4.25	4.27
Receiving Power (W _R)	332	334
Line Volt Drop (V _{d1})	28	26
Line Volt Drop (V _{d2})	29	29
Capacitor Voltage (V _C)	108	107
Capacitor Current (I _C)	0.33	0,67

Table 24 Results For Experiment 2 (50 Hz)

Voltages, Currents and Powers	8μF Shunt	16μF Shunt
Sending Voltage (V _s)	125.4	125.4
Sending Current (I _s)	4.05	3.94
Sending Power (W _s)	358.3	369.1
Receiving Voltage (V _R)	86.2	87.6
Receiving Current (I_R)	4.24	4.31
Receiving Power (W _R)	329.5	340.5
Line Volt Drop (V _{d1})	27.9	27.3
Line Volt Drop (V _{d2})	29.3	29.8
Capacitor Voltage (V _C)	105.2	106.9
Capacitor Current (I_C)	0.31	0.64

Table 25 Results For Experiment 2 (60 Hz)