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Abstract
In this work, the oscillations of a homogeneous string fixed at both ends, and
loaded with a finite number of masses, are studied. Through a simple device,
the cases with one and two concentrated masses are analysed in detail. The
normal modes are observed and the corresponding frequencies are recorded.
The experimental results and the solutions of the wave equation that satisfy
suitable boundary conditions are compared. The theoretical and experimental
results are in very good agreement.

1. Introduction

Vibrating strings have been widely investigated during the 18th century by Euler, d’Alembert
and Lagrange. Several problems in this domain were more difficult to solve than it might seem
today, now that vibrations have become a topic in textbooks. For instance, there was a strong
debate on the possibility of a slope discontinuity for a plucked string [1]. These different
points of view can be considered as one of the first written evidences on the difficulties to
be surmounted to arrive at the mathematical definition of ‘function’, a very familiar concept
nowadays in science. Lagrange also examined the non-harmonic vibrations of a string with a
variable density [1]. Helmholtz used a string loaded at the middle point to determine the exact
frequency at which the impulses fuse into a continuous tone [2]. Rayleigh’s calculations give
the eigenfunctions and the eigenfrequencies of the system as a function of the mass position
along the string [3].

The physics of the waves plays an important role in the education of physicists and
engineers. Particularly, waves in strings are visible waves that provide a simple introduction
to wave phenomena and can be helpful to understand more complex subjects. For that reason,
vibrations of tense cords and, in particular, musical string instruments, have been extensively
studied in many textbooks of university level. Nevertheless, even if specific solutions of
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the d’Alembert’s equation are routine exercises for students, the Rayleigh’s equations for the
loaded string were rarely studied.

More recently, Chen has obtained the eigenfrequencies of a loaded string with a
concentrated mass using the Dirac delta function and the Laplace-transform methods [4].
Pong has shown how the masses of the springs will affect the principal frequencies of a double
spring–mass system [5]. Parmley et al [6] have studied by means of numerical calculations and
experimentally the eigenfunctions and the corresponding eigenfrequencies of a chain mass
string. Santos et al [7] have discussed the motion of a finite mass spring coupled to two
pointlike masses fixed at its ends.

In this work, we study the normal modes of the oscillations of a homogeneous string, fixed
at both ends, and loaded with one or two masses. In both cases, we consider that the masses
are placed at symmetric positions on the string. We describe a simple experimental device that
allows the observation of the form of the modes and to measure their frequencies. Bolwell
analysed the free vibrations of a loaded string [8], but the physics on which the description
is based is incorrect [9]. For that reason, in this work, we study in detail the free vibrations
of a loaded string and we compare them with the free vibrations of a homogeneous string.
The mathematical approach as well as the experimental device can be adapted easily to be
employed in introductory and/or advanced courses of physics.

2. Oscillations of a loaded string

We study the problem of the transverse oscillations of a fixed string of length l, under tension
T, in which N concentrated masses Mi have been placed at the points x = xi (i = 1, . . . , N).
Such a problem can be considered as the equivalent one corresponding to a nonhomogeneous
string with a linear mass density µ(x) given by

µ(x) = µ0 +
N∑

i=1

Mi δ(x − xi) (1)

where µ0 is the constant mass density of the different string portions linking the point masses
and δ is the Dirac’s delta function.

The equation that describes the transverse oscillations of the nonhomogeneous string is

∂

∂x

(
T

∂u

∂x

)
= µ(x)

∂2u

∂t2
. (2)

The deflection function u = u(x, t) represents the vertical displacement of the string at a
distance x, measured from the point x = x0, and at time t. Integrating equation (2) over the x
coordinate, from xi − ε to xi + ε, with ε > 0, and taking then the limit as ε → 0, we obtain
the following condition:(

T
∂u

∂x

)xi+0

xi−0

= Mi

∂2u(xi, t)

∂t2
(3)

that represents a jump of the first derivative of the function u with respect to x, evaluated at
x = xi .

The other condition to be satisfied at the positions x = xi is the continuity of the
displacements, namely,

u(xi − 0, t) = u(xi + 0, t). (4)
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The problem can be now formulated in the following form: find the solutions of the wave
equation corresponding to a homogeneous string,

∂

∂x

(
T

∂u

∂x

)
= µ0

∂2u

∂t2
, (5)

satisfying both the boundary conditions,

u(x0, t) = 0 u(xN+1, t) = 0, (6)

and the additional conditions (3) and (4), where xN+1 = x0 + l is the end of the string.
Using the method of separation of variables, we consider the solutions of equation (5)

under the form

u(x, t) = �(x) eiωt (7)

where ω is the angular frequency.
Replacing the last expression into equation (5), one obtains

d

dx

(
T

∂�

∂x

)
+ ω2µ0� = 0. (8)

Similarly, replacing equation (7) into equations (6), (4) and (3), the following conditions are
obtained:

�(x0) = 0 �(xN+1) = 0 (9)

�(xi − 0) = �(xi + 0);
(

T
∂�

∂x

)xi+0

xi−0

= −Miω
2�(xi) (10)

for i = 1, 2, . . . , N .
Equation (8) and the conditions given by equations (9) and (10) constitute a problem of

eigenvalues. It is worth mentioning that the parameter ω appears not only in equation (8), but
also in the complementary conditions (10).

The eigenfunctions �n of the boundary problem,

d

dx

(
T

∂�

∂x

)
+ ω2µ(x)� = 0; �(0) = 0, �(l) = 0, (11)

are orthogonal, with density µ, on the interval (0, l):∫ l

0
�m(x)�n(x)µ0 dx +

N∑
i=1

Mi�m(xi)�n(xi) = 0 (12)

being m �= n [10, 11]. Finally, a general solution f (x) can be expanded in terms of the
eigenfunctions �n:

f (x) =
∞∑
i=1

An�n(x) (13)

where the coefficients An are determined by the equation

An =
∫ l

0 f (x)�n(x)µ0dx +
∑N

i=1 Mif (xi)�n(xi)

‖�n‖2
(14)

with ‖�n‖, the norm of the eigenfunctions �n [10, 11].



964 B J Gómez et al

0 L 2L

M

x

Figure 1. Single-mass-loaded string of length 2L and linear mass density µ0. The mass M is
attached at the point x = L.

2.1. A single-mass-loaded string

First, we consider the simplest case of a homogeneous string of length l = 2L with linear
mass density µ0 and both fixed ends at x = 0 and x = 2L. We also consider that the string is
loaded with a single point mass M at x = L, as shown in figure 1. Moreover, it is supposed
that the tension T of the string is uniform at the rest position. Outside this position, as the
string oscillates, its length increases and, as a consequence, the value of the tension changes.
However, if ∂�/∂x � 1, the increment of the string length is small and it can be supposed
that the tension remains constant, assuming the same value T as at the rest position [12, 13]. In
this case, the solution of equation (8), satisfying the proper boundary conditions at the points
x = 0 and x = 2L (see equation (9)), can be represented as follows:

�(x) =
{

A sin(kx) 0 � x � L

B sin(k(x − 2L)) L � x � 2L
(15)

where k = ω/c, and c = √
T/µ0 is the velocity of the travelling waves.

Conditions (10) are satisfied whenever

F1(kL)F2(kL) = 0 (16)

where

F1(kL) = sin(kL) F2(kL) = p sin(kL) − 2 cos(kL) (17)

and p = Mω2/T k = (M/m)kL, and m = µ0L is the mass of each one of the string portions.
Equation (16) is the product of two factors which give place to two transcendental

equations. Consequently, two different eigenvalue sets will be obtained [4]. As we will
show below, the eigenvalues (and eigenfunctions) related to each one of these factors are
physical and mathematically very different.

The eigenvalues related to F1 are easily found to be

kn′L = n′π (18)

where n′ is a natural number. For this eigenvalue set it is verified that B = A. Replacing this
result in equation (15) and also considering equation (18), the corresponding eigenfunctions
are given by

�n′(x) = A sin(kn′x); 0 � x � 2L. (19)

The eigenfunctions (19) coincide with the normal vibration modes of a homogeneous
string of length 2L, having an even index. Such modes present a node at x = L and,
consequently, they are not altered by the presence of the concentrated mass at this position.
These modes with a continuous first derivative of the displacements at x = L are symmetric
with respect to x = L. Hereinafter, we will briefly refer to these modes as eigenmodes of
continuous slope.
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Figure 2. Factors F1 and F2 for different values of mass M.

Table 1. First theoretical eigenvalues related to a vibrating homogeneous string, whose length is
2L, with a mass M attached at the point x = L. These values were obtained as roots of the F1 and
F2 factors (see the text). The linear mass density of the string is µ0 = m/L.

kn

n F1 F2 (M = 2m) F2 (M = m)

1 0.860 1.067
2 π

3 3.425 3.643
4 2π

5 6.437 6.578
6 3π

7 9.529 9.629

To determine the eigenvalues related to the factor F2 in equation (16), a graphical method
is chosen here. In figure 2, we represent the factor F2 as a function of kL. Thus, the
eigenvalues are determined as zeros of this function. In this case, it is found that the relation
B = −A between wave amplitudes is satisfied. The related eigenfunctions now present a
jump of the first derivative of the transverse displacement at x = L, and we will refer to them
as eigenmodes of discontinuous slope. These modes are antisymmetric with respect to x = L.

To sum up, we denote with �n all the eigenfunctions of the boundary problem, with kn

being the corresponding eigenvalues. In table 1, we show the eigenvalues corresponding to
the first modes. The modes of odd index n are discontinuous-slope modes, while those of even
index n are modes of continuous slope. As can be seen from table 1, both kinds of modes
successively alternate, being a discontinuous-slope mode that with the lowest frequency.

The ratio between the frequencies f2 and f1 corresponding to the second and first modes,
respectively, depends strongly on the ratio between masses M/m. For instance, for the case
M/m = 1, f2/f1 = 2.917 is found, while for the case M/m = 2, the ratio f2/f1 increases,
and the obtained value is 3.653. This fact has been used by Helmholtz [2] in the studies on
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Figure 3. Homogeneous string of length 3L and linear mass density µ0, loaded with two masses
M at x = L and x = 2L.

the sensations of the tone and with the objective of separating the first two harmonics. From
figure 2, it can be seen that both sets of the eigenvalues, i.e., those obtained as roots of the F1

and F2 factors in equation (16), become nearly identical as n increases enough.
For the case M � m, it is found from equation (17) that only the even modes of a

homogeneous string of 2L length are obtained as solutions of the problem of the loaded string.
In contrast, for the case M � m, all the modes of a homogeneous vibrating string are found.

2.2. Two-mass-loaded string

We now consider the case corresponding to a 3L length homogeneous string with linear mass
density µ0 and both fixed ends (x = 0 and x = 3L), that is loaded with two point masses M
at x = L and x = 2L, as sketched in figure 3. The tension T is also considered constant here
as in the precedent case.

The solution of the differential equation (8), satisfying the boundary conditions at x = 0
and x = 3L (equation (9)), can be represented as follows:

�(x) =




A sin(kx) 0 � x � L

B sin(k(x − L)) + C cos(k(x − L)) L � x � 2L

D sin(kL) 2L � x � 3L.

(20)

Conditions (10) to be satisfied at x = L and x = 2L lead to

F1(kL)F
′
2(kL)F

′
3(kL) = 0 (21)

where

F1 = sin(kL)

F
′
2 = p sin(kL) − 2 cos(kL) − 1 (22)

F
′
3 = p sin(kL) − 2 cos(kL) + 1.

The eigenvalues related to the factor F1 in equation (21) are

kn′L = n′π (23)

where n′ is a natural number. Replacing equation (23) into equation (10), it follows that

B = (−1)n
′
A, C = 0, D = (−1)n

′
A. (24)

Replacing this result in (20), we obtain that

�n′(x) = A sin(kn′x) 0 � x � 3L. (25)

The eigenvalues (23) and the eigenfunctions (25) coincide with the natural modes and
frequencies multiple of 3 (3n, n = 1, 2, 3, . . .) corresponding to a uniform string of 3L length.
As these modes have nodes at x = L and x = 2L, they are not modified by the presence of
the masses at these points. In the same way as for the case of a single mass, these modes
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Figure 4. Plots of the factors F1, F
′
2 and F ′

3 for M = m.

will be called modes of continuous slope because they have continuous first derivative of the
displacements at the points x = L and x = 2L.

The eigenvalues related to the second and third factors in equation (21) are determined
directly from figure 4. In figure 4, F ′

2 and F ′
3 are represented as functions of kL. The function

F1(kL) is also included in the figure. On the one hand, for the eigenvalues related to F ′
2, it

is found that B = −(1 − cos(kL))A,C = A sin(kL) and D = A, and the corresponding
eigenfunctions result antisymmetric with respect to the middle point x = 3L/2:

�(x) =




A sin(kx) 0 � x � L

2A cos(kL/2) sin(k(3L/2 − x)) L � x � 2L

−A sin(k(3L − x)) 2L � x � 3L.

(26)

On the other hand, the eigenvalues associated with the factor F ′
3 lead to B =

(1 + cos(kL))A,C = A sin(kL) and D = −A, and the related eigenfunctions are symmetric
with respect to the middle point of the string. In this case,

�(x) =




A sin(kx) 0 � x � L

2A sin(kL/2) cos(k(3L/2 − x)) L � x � 2L

A sin(k(3L − x)) 2L � x � 3L.

(27)

However, both eigenfunction sets (equations 26 and 27) correspond to modes of
discontinuous slope at the points where the masses were loaded, i.e., x = L and x = 2L.

3. Experimental set-up

The experimental device was mounted in order to study the forced vibrations of a string with
both fixed ends and loaded with one or two masses as shown in figure 5. This enables us to
identify the normal modes describing the transverse string vibration and then to compare them
with those expected from the theory.
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Figure 5. Experimental device used.

We used washers of mass M as concentrated masses that were joined to identical springs of
mass m (we chose M = m). For the case of a single-concentrated-mass set-up, M = 6.9 g was
used, whereas for the case of two masses, M = 4.2 g was employed. Springs instead of rubber
elastic strings were used in order to enhance the amplitude of the transverse oscillations. Strings
were found to possess a high friction coefficient that produces strong damping oscillations.

We worked with a Pasco Scientific WA-9753 mechanical wave driver. The wave driver
was connected to a PC through an interface PASCO 750, and using the software Science
Workshop it was possible to handle a generator of functions and to change the values of
amplitude and frequency of the different signals. So, in both cases studied here, one of the
ends of the springs was attached to a support and the other one was connected to the piston rod
of the wave driver. In this way, the system springs–masses and the wave driver were vibrating
at the same frequency. The length l of the whole system was particularly chosen in such a way
that the vibrational modes were clearly observed.

A tension of 3 V was applied to the driver, implying maximum displacements of the piston
rod of 3 mm approximately. These displacements were much smaller than the maximum
amplitudes of the string oscillations. In particular, when the frequency of the wave driver
is equal to one of the normal frequencies of the system, the corresponding normal mode of
oscillation is excited. In this case, the amplitudes of the transverse oscillations are greater
than the displacements of the piston road. For that reason, we can also consider this point as
a fixed end [13].

Finally, we varied the frequencies of the external excitation in order to obtain the different
vibrational modes for both configurations that we have considered. It is important to emphasize
that we have considered as the frequency of each normal mode the value of the external
frequency for which the amplitude of oscillations is maximum (resonance). The resonance
peaks were found to be very sharp, showing a high sensitivity of the experimental device
(≈0.01 Hz).

4. Results

In the following, we present our results corresponding to the resonant modes of the string
fixed at its two ends and loaded with one or two masses M. In the resonant condition, the
frequency of the external excitation matches one of the normal frequencies of the system,
exciting the corresponding normal vibration mode. Several resonances corresponding to the
different vibration modes are then expected here. In this way, we are able to explore the
different vibration modes and to compare them with the predictions of the theory shown in
section 2.

4.1. One concentrated mass

We first analyse the resonant modes of the system with a single mass M attached at its middle
point. In table 2, we show the measured external frequencies corresponding to the seven first
resonant modes of the system. We have also included in table 2 the theoretical ratios of the



Oscillations of a string with concentrated masses 969

Figure 6. Normal modes of a homogeneous string with a concentrated mass in the middle point.
Left panel: experimental results. Right panel: analytical solutions.

Table 2. Measured normal frequencies for the system with one concentrated mass. The theoretical
ratios are constructed from the normal frequencies shown in table 1, for the case M = m.

Frequencies (Hz) Experimental ratio Theoretical ratio

f1 = 6.1
f2 = 17.7 f2/f1 = 2.902 f2/f1 = 2.917
f3 = 21.0 f3/f1 = 3.443 f3/f1 = 3.383
f4 = 35.5 f4/f1 = 5.820 f4/f1 = 5.835
f5 = 38.0 f5/f1 = 6.229 f5/f1 = 6.109
f6 = 53.2 f6/f1 = 8.721 f6/f1 = 8.752
f7 = 55.71 f7/f1 = 9.133 f7/f1 = 8.942

different normal frequencies and the fundamental one. These frequencies correspond to those
obtained from equations (16) and (17) (see table 1, the case M = m). A very good agreement
is found between theory and experiments. In figure 6, the pictures of the observed modes
are shown. The theoretical eigenfunctions computed from equation (15) are also included
in figure 6. As expected, the modes of continuous and discontinuous slopes alternate, the
fundamental mode being a discontinuous slope.

As can be noticed from table 2, there are consecutive modes having close frequencies.
What happens if we excite the system with an intermediate external frequency, lying between
two of these consecutive frequencies? It is well known from the forced oscillations that, after
a transitory regime, the system oscillates with the frequency of the external excitation. But
the motion is not trivial, since these consecutive modes are excited in a different manner:
the string motion corresponding to the mode with smaller frequency is in phase opposition
with respect to the movement of the piston rod, whereas that of greater frequency is in
phase with the movement of the piston rod. In addition, as it was mentioned previously,
the eigenfunctions that describe consecutive modes are either symmetric or antisymmetric
functions with respect to the centre of the system. Then, if we excite the system with a
concentrated mass at a frequency of 19.3 Hz, the second and third modes will be simultaneously
excited. According to the previous discussion, half of the system will be practically horizontal
since the contributions of the two modes are cancelled, whereas in the other half those
contributions are reinforced, as can be seen in figure 7. Similar behaviour may be obtained if the



970 B J Gómez et al

Figure 7. Oscillations of a homogeneous string with a concentrated mass in the middle point. The
system is excited with an intermediate external frequency, lying between: the second and third
modes (top); and between the fourth and fifth modes (bottom). Left panel: experimental results.
Right panel: theoretical solutions.

Table 3. Frequencies measured for the system with two concentrated masses. The theoretical
ratios are constructed from the frequencies obtained from equation (21).

Frequencies (Hz) Experimental ratio Theoretical ratio

f1 = 3.76
f2 = 7.09 f2/f1 = 1.886 f2/f1 = 1.897
f3 = 15.80 f3/f1 = 4.202 f3/f1 = 4.295
f4 = 17.52 f4/f1 = 4.660 f4/f1 = 4.670
f5 = 19.98 f5/f1 = 5.316 f5/f1 = 5.268
f6 = 31.60 f6/f1 = 8.404 f6/f1 = 8.590
f7 = 33.11 f7/f1 = 8.806 f7/f1 = 8.799
f8 = 34.80 f8/f1 = 9.255 f8/f1 = 9.182
f9 = 46.73 f9/f1 = 12.428 f9/f1 = 12.886

system is excited at a frequency of 36.4 Hz but in this case the fourth and fifth modes are excited
simultaneously.

4.2. Two concentrated masses

In table 3, we show the measured frequencies for the system with two concentrated masses.
Analogously with the previous case, in table 3 we have also included both the experimental
and theoretical ratios of the different frequencies and the fundamental one, to make possible
a comparison between theory and experience. These theoretical frequencies correspond to
those obtained from equation (21).

In figure 8, the pictures of the nine first normal modes of a fixed string loaded with two
point masses are shown. Theoretical eigenfunctions computed from equation (20) are also
included in the figure to compare with the experiments. In this case, it is observed that the
discontinuous and continuous slope modes alternate in the following way: every two modes
of discontinuous slope are followed by one with a continuous slope.

As can be noted from table 3, there exist consecutive modes with nearby frequencies. If
the system is excited with an intermediate external frequency, the general motion of the string
may be described in a similar way as the case of one concentrated mass.

In the case of massless strings, the system will have only two normal modes of oscillations.
These modes correspond to both masses oscillating in phase or in phase opposition. It is easy
to show that the ratio of the corresponding frequencies is equal to

√
3. The form of these

modes corresponds to the two first modes shown in figure 8. In the present case, in which the
mass m of the string is non negligible, the ratio f2/f1 ≈ 1.9 (see table 3). However, the ratio
f2/f1 tends to

√
3 as M increases.
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(a) (b)

Figure 8. Normal modes of a homogeneous string with two concentrated masses. (a) Experimental
results. (b) Analytical solutions.

5. Free oscillations

We now study the free oscillations of a fixed string of density µ(x) and length 2L, with a
mass M attached at x = L. In this case, the eigenfunctions �n, solutions of the corresponding
boundary problem, are given by equation (15), while the corresponding eigenvalues are
determined from the transcendental equation (16).

The general solution of the problem can be written as a linear combination of the
eigenfunctions �n:

u(x, t) =
∞∑

n=1

An�n(x) cos(cknt + φn). (28)

Equation (28) represents the general motion of a fixed string loaded at its centre. The
phases φn and the amplitudes An in equation (28) are determined from the initial conditions:

u(x, 0) = f (x) (29)

u̇(x, 0) = g(x) (30)

where both f (x) and g(x) are arbitrary well-behaved functions, describing the position and
the velocity of the string at t = 0, respectively. Supposing that the initial velocity of the string
is equal to zero, i.e., g(x) = 0, it follows that φn = 0 for all natural n. Taking into account
this result, condition (29) then gives

f (x) =
∞∑

n=1

An�n(x). (31)
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Figure 9. Initial shape of a uniform string fixed at both ends.

Equation (31) represents the expansion of the function f (x) in terms of the eigenfunctions
�n(x). The coefficients An can be determined by using equation (14). In the following, we
consider the case where the mass M is initially separated a distance h from the rest position,
as shown in figure 9. In this case, the function f (x) takes the simple form

f (x) =




h

L
x 0 � x � L

− h

L
x + 2h L � x � 2L.

(32)

Using equation (14), the coefficients An are found to be

An =




2h sin(knL)

A(knL)2
[
1 + M

2m
sin2(knL)

] n = 1, 3, 5 . . .

0 n = 2, 4, 6 . . . .

(33)

The result (33) indicates that only the odd-index modes contribute to the general motion
of a string pulsed at its centre. This result can be understood observing that the initial shape
of the string f (x) is a symmetric function with respect to the point x = L. The normal
modes associated with odd index appearing in (33) are discontinuous-slope modes and, as a
consequence, they are also symmetric functions with respect to x = L.

The velocity of an arbitrary point x0 of the string, as a function of time, is defined as
follows:

vy(x0, t) = ∂u(x0, t)

∂t
. (34)

In particular, choosing x0 = L and taking into account equations (28)–(34) and
�n(L) = A sin(knL), we obtain

vy(L, t) = −2hc

L2

∞∑
i=1

sin2(knL)

kn

[
1 + M

2m
sin2(knL)

] sin(cknL) (35)

with n an odd natural number.
The velocity of the x = L point for the case of a uniform fixed string can be easily derived

from equation (35) by taking M = 0. In this case, knL = nπ/2 is satisfied for all natural n.
Then,

v(h)
y (L, t) = −4hc

πL

∞∑
i=1

sin(nck1t)

n
(36)
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Figure 10. Snapshots of the free vibrations of a uniform string displaced at its centre and released
from initial velocity zero. After a time t = τ the initial shape of the string is recovered.
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Figure 11. Idem figure 10 but for the case of a uniform string with a mass M = m attached at its
centre, with m being the mass of each string portion. τ is the period of the vibrations of a uniform
string without attached mass.

where the upper index (h) indicates that it corresponds to the case of a homogeneous string,
of 2L length, without an attached mass. Equation (36) represents the Fourier’s expansion of
a periodic square wave of height ±4ch/πL.

In figure 10, different snapshots at t = 0, τ/8, τ/4, 3τ/8 and τ/2 of a homogeneous string
without concentrated mass are shown, where τ = 4L/c is the period of oscillation of the string
of length 2L. In figure 11, different snapshots at the same times for the string with an M = m

concentrated mass on its middle point are shown. For the calculation of the free oscillations
of the homogeneous string the first ten odd harmonics of the series were considered, whereas
for the case of the concentrated mass, the first seven terms were used in formula (28). The
inclusion of higher order harmonics does not modify the results discussed here.

In figure 10, it is observed that the points of the string initiate the motion with a constant
velocity, which coincides with the velocity of the middle point given by equation (36). This
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0 1
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t /τ 

 M = 0         M = m        M = m/2
             M = m/4      M = m/8

Figure 12. Transverse velocity at x = L of the string loaded with a single mass M at that point, as
a function of the time. m is the mass of each string portion of length L.

(This figure is in colour only in the electronic version)

behaviour can be explained as it follows. In the case of the homogeneous string, an element
of a string of infinitesimal mass located in its middle point experiments at t = 0 a transverse
net force pointing down. In this moment this string element acquires an instantaneous infinite
acceleration that produces a jump in the velocity from 0 to −(4h/ρL)c. Immediately after, the
net force acting on this element of string turns to zero and, therefore, it moves with a uniform
velocity −(4h/ρL)c until it reaches t = τ/2 at the lowest position. Then, a net force pointing
upwards acts producing a reverse of the velocity without changing the module. The transverse
velocity of the middle point of the string as a function of time is a square wave of period τ .

In the case of the loaded string the behaviour is different. Due to the presence of
the attached mass, the movement of the system is not periodic: the initial form is not
retrieved anymore. Moreover, the motion is delayed with respect to the one corresponding to
a homogeneous string (see figure 11). This delay increases as the value of the attached mass
increases.

In figure 12, the transverse velocity of the point L is represented for different values of the
concentrated mass. As the acceleration of the concentrated mass is always finite, its velocity
has no discontinuities. The case M = 0 that corresponds to the homogeneous string is also
included. It can be observed that the transverse velocity for the case of the loaded string
tends to that of the homogeneous string as M diminishes, recovering the square wave that
characterizes the transverse velocity for M = 0. The oscillations observed for the case M = 0
in figure 12 are simply due to the inclusion of a small number of harmonics.

6. Conclusion

In this work, we have analysed the normal modes of oscillation of a loaded string with one or
two masses and fixed at its ends. We found the correct eigenfunctions of the problem by using
the correct orthogonality conditions, at variance with those given in [8].

The experimental set-up allowed us to clearly visualize the different vibrational modes.
The eigenvalues calculated analytically and the corresponding eigenfunctions were compared



Oscillations of a string with concentrated masses 975

with those obtained experimentally, showing a very good agreement. It has also been possible
to observe the particular shape that acquires the system when it is excited with a frequency,
lying between two consecutive modes, which also shows a good agreement with the analytic
solution.

We have compared in detail the free vibrations of a loaded string pulsed at its centre with
the case of the free vibrations of a homogeneous string. The transverse velocity of the middle
point of the system as a function of time was analysed for different values of the concentrated
mass, including the case M = 0.

Finally, it is noted that the problem studied here may be useful to gain further insight
into the comprehension of other different physical systems. For instance, it may be shown
that the eigenvalue problem related to the ammonia molecule [14] has close similarities with
the string loaded at its middle point. It is also the case of a dipole antenna with concentrated
inductances. Concentrated inductances can be used in order to reduce the physical length of
the antenna in its low frequency mode [15]. It can be shown that the effect of the concentrated
inductance is similar to the concentrated mass in a homogeneous string analysed in this work.
These subjects will be included in a future article.

Acknowledgments

The authors would like to thank the Facultad de Ciencias Exactas, Ingenierı́a y Agrimensura
and the Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, Argentina, for financial
support.

References

[1] Lagrange J-L 1867 Œvres (Paris: Gauthiers-Villiars) (quoted in Boudaoud A, Couder Y, Ben Amar M 1999
Eur. Phys. J. B 9 159–65)

[2] Helmholtz H L V 1877 On the Sensations of Tone (New York: Dover) (reprinted 1954)
[3] Rayleigh J W S 1894 The Theory of Sound 2nd edn (New York: Dover) (reprinted 1945)
[4] Chen Y 1963 J. Franklin Inst. 276 191–6
[5] Pong W 1953 Am. J. Phys. 21 546–8
[6] Parmley S, Zobrist T, Clough T, Perez-Miller A, Makela M and Yu R 1995 Am. J. Phys. 63 547–53
[7] Santos F C, Coutinho Y A, Ribeiro-Pinto L and Tort A C 2006 Eur. J. Phys. 27 1037–51
[8] Bolwell J E 1999 Eur. J. Phys. 20 305–12
[9] Gough C E 2000 Eur. J. Phys. 21 L11–4

[10] Tikhonov A N and Samarskii A A 1996 Equations of Mathematical Physics (New York: Dover)
[11] Courant R and Hilbert D 1955 Methods of Mathematical Physics vol 1 (New York: Interscience)
[12] Crawford F S 1967 Berkeley Physics Course: Vol 3. Waves (New York: McGraw-Hill)
[13] French A P 1982 Vibration and Waves (New York: W W Norton & Company, Inc.)
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